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1 Definitions

a Bravais lattice basis vector

R Bravais lattice vector

bi reciprocal lattice basis vector

G reciprocal lattice vector

k Bloch k-vector restricted to the first Brillouin zone

UG Fourier coefficient of the periodic potential U(r)

c(k−G) Fourier coefficient of the Bloch wave function ψk(r); see (4.4)

K or K′ or Ki a particular reciprocal lattice vector

ψn,k Bloch waves

ϕn(r−R) Wannier function

ψi(r−R) an atomic orbital on lattice site R

∗Updated October 21, 2022
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2 Lattice definitions

The Bravais lattice is the set of all points lattice points generated by discrete translations by a set
of primitive lattice vectors ai. The set of direct lattice points R is defined

R = n1a1 + n2a2 + n3a3 where ni ∈ Z (2.1)

The lattice has three-dimensional spatial periodicity, and so we may expect that many lattice prop-
erties (e.g. the potential electrons in the solid experience excluding electron-electron interactions)
to have a similar periodicity and a Fourier representation. For some lattice-periodic function f(r)

f(r) =
∑
G

cGe
iG·r where eG·R = 1 (2.2)

Notice that if both eb1·R = eb2·R = 1, then e(m1b1+m2b2)·R = 1 where mi are integers. Therefore,
the set of reciprocal lattice vectors G also form a Bravais lattice

G = m1b1 +m2b2 +m3b3 where mi ∈ Z (2.3)

We can relate ai and bj by requiring that1

ai · bj = 2πδij (2.4)

We can check that the expression above is satisfied by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
; b2 = 2π

a3 × a1
a1 · (a2 × a3)

; b3 = 2π
a1 × a2

a1 · (a2 × a3)
(2.5)

In reciprocal space, the Wigner-Seitz primitive cell of reciprocal lattice is called the first Brillouin
zone and becomes relevant in our development of electronic bands.

3 Bloch’s theorem

We consider a defect-free, infinite crystal to consist of stationary ions arranged in a periodic lattice
and electrons that move through the potential generated by the ions U(r). Ignoring electron-
electron interactions (independent electrons approximation), we expect the potential to be periodic
in the Bravais lattice

U(r+R) = U(r) (3.1)

The Hamiltonian of an electron2 in the crystal has the form

H =
p2

2m
+ U(r) (3.2)

Does the translation symmetry of the Hamiltonian provide constraints on the electronic wave
function? Yes! To see this, first we define the translation operator. For any function f(r)

T (R)f(r) = f(r+R) (3.3)

1To check, substitute this into eiG·R.
2Note: we need only consider the wave function of a single electron rather than the full many-body wave function

because of the independent electrons approximation.
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Notice that by the definition above

T (R)T (R′) = T (R′)T (R) = T (R+R′) (3.4)

Let ψ(r) be an eigenstate of T (R) with eigenvalue c(R)

T (R)ψ(r) = c(R)ψ(r) (3.5)

Then from (3.4)
c(R+R′) = c(R)c(R′) (3.6)

This is also a property of exponential functions. Without loss of generality, we can rewrite c(R)
as,

c(R) = eik·R where k ∈ C3 (3.7)

Therefore
T (R)ψ(r) = c(R)ψ(r) (3.8)

ψ(r+R) = eik·Rψ(r) (3.9)

Since Hamiltonian commutes with T (R)3, there exists a simultaneous eigenbasis of H and T (R).
Hence any solution to the Schrodinger equation ψ(r) must obey (3.9).

However the wave vector k in (3.9) could be anything (e.g. it doesn’t even have to be real!). To
further constrain k, we impose boundary conditions. We imagine that a physical crystal consists
of N1N2N3 = N lattice sites where N is very large. Rather than imposing a “hard” boundary con-
dition, we impose periodic boundary condition on the wave function (Born-Von Karman boundary
condition)

ψ(r+Niai) = ψ(r) (3.10)

In one-dimension this corresponds to a chain of N atoms arranged in a closed loop. Applying the
condition we found above (3.9) to (3.10), we find

ψ(r+Niai) = eik·(Niai)ψ(r) = ψ(r) (3.11)

Therefore,
eik·(Niai) = eiNi(k·ai) = 1 (3.12)

The expression above is satisfied if an only if Ni(k · ai) is a multiple of 2π. Recalling (2.4), this
holds if and only if k = (mi/Ni)bi where mi is an integer. Putting everything together, Bloch’s
theorem says that if ψk(r) is an eigenstate of the Hamiltonian for an electron in a crystal lattice
with periodic boundary conditions, then

ψk(r+R) = eik·Rψk(r) where k =
mi

Ni
bi and mi ∈ Z (3.13)

Some remarks on Bloch’s theorem:

• From Bloch’s theorem, we know that |ψk(r)| is periodic. Define uk(r) such that |uk(r)|2 =
|ψk(r)|2, then we see that ψk(r) = eik·ruk(r) satisfies Bloch’s theorem. Therefore, an alter-
native form of Bloch’s theorem is that if ψk(r) is an eigenstate of the Hamiltonian for an
electron in a crystal lattice with periodic boundary conditions, then

ψk(r) = eik·ruk(r) where uk(r) is periodic in R (3.14)
3The Hamiltonian is invariant under translation operations, or T (R)H(r)ψ(r) = H(r+R)ψ(r+R) = H(r)ψ(r+

R) = H(r)T (R)ψ(r)
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• The wave vector k does not uniquely specify a Bloch wave ψk(r) because for any k in the
first Brillouin zone and G a reciprocal lattice vector

ψk(r+R) = eik·Rψk(r)

ψk+G(r+R) = ei(k+G)·Rψk+G(r) = eik·Rψk+G(r)
(3.15)

Therefore, we can constrain k to be in the first Brillouin zone without loss of generality.

k ∈ first Brillouin zone

With this, we can also calculate the number of distinct k. The volume of the first Brillouin
zone is VBZ = b1 · (b2×b3) and from (3.13) the reciprocal-space volume occupied by a single
k is (b1/N1) · (b2/N2)× (b3/N3) = VBZ/N . Therefore

# k in the first Brillouin zone = N (3.16)

• Plugging the Bloch wave into Schrodinger’s equation,[
−ℏ2

2m
∇2 + U(r)

](
eik·ruk(r)

)
= εk

(
eik·ruk(r)

)
(3.17)[

ℏ2

2m

(
k2 −∇2

)
+ U(r)

]
︸ ︷︷ ︸

Heff

uk(r) = εkuk(r) (3.18)

There are infinitely many solutions for uk(r) because εk can be arbitrarily large. Furthermore,
using the Bloch wave require imposing a periodic (Born-Von Karman) boundary condition

uk(r+Niai) (3.19)

and so we expect the set of solutions for uk(r) to be discrete, which we will label with the
index n.

Heff un,k = εn,k un,k (3.20)

ψn,k(r) = eik·run,k(r) (3.21)

Plotting the dispersion (εn,k versus k), we find distinct bands of energy, each corresponding to
an n. By the Pauli exclusion principle, at most two electrons4 can have the same wave vector
k. Also recall from the previous remark that there are a total of N distinct k5. Therefore,
there can be at most 2N electrons in a band.

Figure 1: Example electronic band structure.

4Electrons have spin-1/2.
5That is, k in the first Brillouin zone.
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4 Schrodinger equation for Bloch waves

In the previous remark, we started to write out Schrodinger’s equation for Bloch waves. Here, we
will go through the algebra more thoroughly. The Schrodinger equation has the form[

−ℏ2

2m
∇2 + U(r)

]
ψk(r) = εkψk(r) (4.1)

Notice that we can make two Fourier expansions:

1. uk(r) is periodic in R. Therefore

ψk(r) = eik·ruk(r)

= eik·r
∑
G

ck,Ge
−iG·r

=
∑
G

ck,Ge
i(k−G)·r

(4.2)

where

ck,G =

∫
⟨r⟩

d3ruk(r)e
iG·r

=

∫
⟨r⟩

d3r (ψk(r)e
−ik·r)eiG·r

=

∫
⟨r⟩

d3rψk(r)e
−i(k−G)·r

≡ ck−G

(4.3)

Putting everything together,

ψk(r) =
∑
G

ck−Ge
i(k−G)·r where ck−G =

∫
⟨r⟩

d3rψk(r)e
−i(k−G)·r (4.4)

2. The potential U(r) is also periodic in R. Therefore

U(r) =
∑
G

UGe
−iG·r where UG =

∫
⟨r⟩

d3rU(r)eiG·r (4.5)

Since we are free to define U(r) up to a constant. We can always add a constant energy such
that U0 = 0. Furthermore, since U(r) is real, U∗

k = U−k.

U0 = 0, U∗
k = U−k (4.6)

Now, we plug everything into Schrodinger’s equation

ℏ2

2m

∑
G

ck−G|k−G|2ei(k−G)·r +

(∑
G′

UG′e−iG′·r

)(∑
G

ck−Ge
i(k−G)·r

)
= εk

∑
G

ck−Ge
i(k−G)·r

(4.7)
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∑
G

[
ℏ2

2m
|k−G|2 − εk

]
ck−Ge

i(k−G)·r +
∑
G,G′

UG′ck−Ge
i(k−G−G′)·r = 0 (4.8)

To simplify the second term in the expression above, we define G′′ = G+G′. Then∑
G,G′

UG′ck−Ge
i(k−G−G′)·r =

∑
G′,G′′

UG′ck+G′−G′′ei(k−G′′)·r

=
∑
G′′

[
ei(k−G′′)·r

∑
G′

UG′ck+G′−G′′

]

(redefine G′′ → G) =
∑
G

[
ei(k−G)·r

∑
G′

UG′ck−G+G′

]

(define G′′ = G−G′) =
∑
G

[
ei(k−G)·r

∑
G′′

U(G−G′′)c(k−G′′)

]

(redefine G′′ → G′) =
∑
G

[
ei(k−G)·r

∑
G′

U(G−G′)c(k−G′)

]

(4.9)

Substituting this back into (4.8)

∑
G

[(
ℏ2

2m
|k−G|2 − εk

)
c(k−G) +

∑
G′

U(G−G′)c(k−G′)

]
ei(k−G)·r = 0 (4.10)

For each G, the term in the square bracket must vanish. So(
ℏ2

2m
|k−G|2︸ ︷︷ ︸
ε0
(k−G)

−εk
)
c(k−G) +

∑
G′

U(G−G′)c(k−G′) = 0 for fixed k and all G (4.11)

We find that for a particular Bloch wave with wave vector k, in a periodic potential, the Schrodinger
equation becomes a set of coupled linear equations for c(k−G). Note that G is a reciprocal lattice
vector not constrained to the first Brillouin zone!

Some remarks:

• This system of equations (4.11) is underdetermined because εk is an additional unknown. We
expect there to be a discrete and infinite set of εk for which we can find c(k−G) that satisfies
the coupled equations above. This set of eigenenergies {εn,k} precisely correspond to the
bands described in the previous section and each εn,k yields a corresponding set of {cn,(k−G)}
with which we can construct ψn,k via (4.4).

• We can write (4.11) in matrix form; recalling U0 = 0 (4.6)
ε0(k−G0)

− εk U(G0−G1) U(G0−G2) . . .

U(G1−G0) ε0(k−G1)
− εk U(G1−G2)

U(G2−G0) U(G2−G1) ε0(k−G2)
− εk

...
. . .




c(k−G0)

c(k−G1)

c(k−G2)

...

 = 0 (4.12)
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• Notice that we have not made any approximations. If we knew U(r), we could use (4.6)
to find all of the UG

6, then numerically solve (4.11) to find the bands structure {εn,k} and
corresponding Bloch waves {cn,(k−G)}.

• As a sanity check, let’s examine (4.11) in the limiting case of the completely free electron:
U(r) = 0. Here, UG = 0 for all G, so(

ε0(k−G) − εk

)
c(k−G) = 0 (4.13)

To be explicit, there is no implied summation over (k−G) on the LHS. Hence, for each G,
the expression above holds independently.

It must be true that at least one ck−G is non-zero; otherwise ψk(r) = 0. Let K ∈ {G} and
K′ ∈ {G} \K, then

ck−K = 0 which implies εk = ε0(k−K) (4.14)

Notice that εk does not depend on G. Therefore if εk is

1. Non-degenerate7: then

ε0(k−K′) − εk ̸= 0 which implies c(k−K′) = 0 (4.15)

From (4.4), this yields a plane wave solution

εk =
ℏ2

2m
(k−K)2 , ψk(r) ∝ ei(k−K)·r (4.16)

2. Degenerate8: then let’s first define K = K1 and {K1 . . . ,Km} to be the set of all
reciprocal lattice vectors for which εk = ε0(k−Ki)

. Furthermore, redefineK′ ∈ {G}\{Ki}.
It remains true that

ε0(k−K′) − εk ̸= 0 which implies c(k−K′) = 0 (4.17)

But now
ε0(k−Ki)

− εk = 0 which implies c(k−Ki) = anything (4.18)

By (4.4), this yields a solution that is a linear combination of plane waves

εk =
ℏ2

2m
(k−K)2 , ψk(r) ∝

∑
i

c(k−Ki)e
i(k−Ki)·r (4.19)

Regardless of if εk is degenerate, we get the band structure (the set of all eigenenergies)

εn,k =
ℏ2

2m
(k−Gn) (4.20)

If we were to solve Schrodinger’s equation for a free electron normally, we would find the set
of eigenstates

εk′ =
ℏ2

2m
, ψk′(r) ∝ eik

′·r (4.21)

6There are infinitely many UG, but presumably, we may keep only a small subset of non-negligible terms for a
numerical approximation. For numerics, this is the approximation!

7In other words ε0(k−K) ̸= ε0(k−K′)
8There exists one or more K′ such that ε0(k−K) = ε0(k−K′).
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where k′ is any vector in reciprocal space. Notice that (4.21) and (4.16, 4.19) become the
same (as they must!) when

k′ = k+G (4.22)

This makes sense because k is constrained to the first Brillouin zone while k′ is free to span
the entire reciprocal space. To further drive home this point, let’s examine the eigenenergies
in both pictures. To simplify things, we’ll work in one-dimension with a lattice spacing of a.

Figure 2: Left: the reduced zone scheme. Right: the normal dispersion.

As expected, εk′ is simply the energy of the free electron which depends quadratically on k′.
However, in the band structure picture, k′ outside the first Brillouin zone are mapped to k
within the first Brillouin zone with the subtraction of the reciprocal lattice vector G. Each
reciprocal lattice vector G defines a band with dispersion ε0(k−G).

5 Nearly free electron model

Above we derived the exact form of Schrodinger’s equation for Bloch states (4.11); however, the
resulting expression can not in general be solved exactly. In the nearly free electron model, we
approach (4.11) perturbatively by treating the Hamiltonian as that of a free electron with a small
perturbation U(r).

Like all perturbative approaches, out analysis splits into the case where the bare free-electron
eigenenergies εk are non-degenerate and degenerate.

Case I (non-degenerate): Let K be a particular reciprocal lattice vector and K′ ∈ {G}\K. For

fixed k, the band ε0(k−K) is non-degenerate if

ε0(k−K) ̸= ε0(k−K′) for all K′ (5.1)

We can treat U(r) as a small perturbation if

U(r) ≪ ε0(k−K) − ε0(k−K′) for fixed k and all K′ (5.2)

Recall that for a free electron, K defines a band with dispersion ε0(k−K) and c(k−K′) = 0. With a

small perturbing potential, we expect the bare energy ε0(k−K) to shift slightly and c(k−K′) = 0 to

be O(U).
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Equation (4.11) takes the form(
εk − ε0(k−G)

)
c(k−G) =

∑
G′

U(G−G′)c(k−G′) (5.3)

Solving for the c(k−G) terms

c(k−G) =
U(G−K)c(k−K)

εk − ε0(k−G)

+
∑
K′

U(G−K′)

O(U)︷ ︸︸ ︷
c(k−K′)

εk − ε0(k−G)

=
U(G−K)c(k−K)

εk − ε0(k−G)

+O(U2)

(5.4)

Then (
εk − ε0(k−K)

)
c(k−K) =

∑
G′

U(K−G′)c(k−G′)

=
∑
G′

U(K−G′)

[
U(G′−K)c(k−K)

εk − ε0(k−G′)

+O(U2)

]

=
∑
G′

U(K−G′)U(G′−K)

εk − ε0(k−G′)

c(k−K) +O(U3)

=
∑
G′

∣∣U(K−G′)

∣∣2
εk − ε0(k−G′)

c(k−K) +O(U3)

(5.5)

εk = ε0(k−K) +
∑
G′

∣∣U(K−G′)

∣∣2
εk − ε0(k−G′)

+O(U3) (5.6)

Valid up to first order, εk ≈ ε0(k−K). Therefore

εk = ε0(k−K) +
∑
G′

∣∣U(K−G′)

∣∣2
ε0(k−K) − ε0(k−G′)

+O(U3)︸ ︷︷ ︸
energy shift

(5.7)

From the expression above, we see that every band below ε0(k−K) contributes a term that raises εk
and every band above contributes a term that lowers εk. Therefore, non-degenerate bands repel
each other under weak perturbation by a potential.

Importantly, the energy shift of the perturbation to be O(U2). Therefore, to leading order, we need
only consider the energy shift of degenerate or nearly degenerate states.

Case II (degenerate): suppose now that for some fixed k, there exists a set of reciprocal lattice

vectors Ki ∈ {K1, . . . ,Km} such that ε0(k−Ki)
are degenerate or nearly degenerate∣∣∣ε0(k−Ki)

− ε0(k−Kj)

∣∣∣≪ U(r) (5.8)

Define K′ ∈ {G} \ {Ki}. Once again, (4.11) takes the form(
εk − ε0(k−G)

)
c(k−G) =

∑
G′

U(G−G′)c(k−G′) (5.9)
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In the free-electron case with degeneracies, recall c(k−K′) = 0. But with a small perturbation, we
expect c(k−K′) to be at most O(U). Solving for the c(k−G) terms

c(k−G) =
1

εk − ε0(k−G)

( m∑
j=1

U(G−Kj)c(k−Kj) +
∑
K′

U(G−K′)

O(U)︷ ︸︸ ︷
c(k−K′)

)

=
1

εk − ε0(k−G)

m∑
j=1

U(G−Kj)c(k−Kj) +O(U2)

(5.10)

Then for i = 1, . . . ,m, the set of m coupled equations gives us the energy shifts(
εk − ε0(k−Ki)

)
c(k−Ki) =

∑
G′

U(Ki−G′)c(k−G′)

=

m∑
j=1

U(Ki−Kj)c(k−Kj) +
∑
K′

U(Ki−K′)c(k−K′)

=

m∑
j=1

U(Ki−Kj)c(k−Kj) +
∑
K′

U(Ki−K′)

 1

εk − ε0(k−K′)

m∑
j=1

U(K′−Kj)c(k−Kj) +O(U2)


=

m∑
j=1

[
U(Ki−Kj)c(k−Kj) +

∑
K′

U(Ki−K′)U(K′−Kj)

εk − ε0(k−K′)

c(k−Kj) +O(U3)

]
(5.11)

To leading order in U ,(
εk − ε0(k−Ki)

)
c(k−Ki) =

m∑
j=1

U(Ki−Kj)c(k−Kj) where i = 1, . . . ,m (5.12)

Solving the system of equations above yields new energies valid up to first-order in perturbation
theory. In matrix form, the system becomes (recalling U0 = 0)

εk − ε0(k−K1)
−U(K1−K2) . . . −U(K1−Km)

−U(K2−K1) εk − ε0(k−K2)
. . . −U(K2−Km)

. . .
. . .

...

−U(Km−K1) −U(Km−K2) . . . εk − ε0(k−Km)




ck−K1

ck−K2

. . .

ck−Km

 = 0 (5.13)

If M is the matrix above, this is equivalent to det(M) = 0.

Remarks:

• Returning to the one-dimension lattice from the previous section, let’s find the band structure
in the nearly free electron model.

We notice that there are no degeneracies in the band structure except for when k = 0,±π/a.
Near these Bloch vectors, we find pairs of degenerate bands ε0(k−Ki)

and ε0(k−Kj)
and, under

small perturbation U(r), we expect the dispersion in these regions to be O(U).

In particular, let’s focus on the degeneracy at k = π/a and bands ε0(k−G0)
and ε0(k−G1)

where

G0 = 0 and G1 = π/a. To first-order in perturbation theory, (5.12) becomes(
εk − ε0(k−G0)

−U(G0−G1)

−U(G1−G0) εk − ε0(k−G1)

)(
c(k−G0)

c(k−G1)

)
= 0 (5.14)
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Noticing UG1 = U(G0−G1) and using (4.6)

0 =det

{(
εk − ε0(k−G0)

−UG1

−UG1∗ εk − ε0(k−G1)

)}
= ε2k − εk

[
ε0(k−G0)

− ε0(k−G1)

]
− |UG1 |

2

(5.15)

εk =
ε0(k−G0)

− ε0(k−G1)
±
√(

ε0(k−G0)
− ε0(k−G1)

)2
+ 4|UG1 |

2

2
(5.16)

εk =
ε0(k−G0)

− ε0(k−G1)

2
±

(ε0(k−G0)
− ε0(k−G1)

2

)2

+ |UG1 |
2

1/2

(5.17)

We see that at the degeneracy, where two bands overlap, the perturbation separates the
bands, forming a band gap. From (5.17) magnitude this gap is 2|UG1 |. In three dimensions,
the band structure exhibits similar behavior but in general can be more complicated.

Figure 3: Left: bare free electron dispersion. Areas with degenericies are highlighted. Right: perturbed bands from
a weak potential.

6 Wannier Functions

Before exploring the tight binding model, let’s develop the idea of Wannier functions. Wannier
functions are a method of representing a general Bloch wave. These functions are not specific to
the tight-binding model but are particularly relevant!

For fixed r, if we consider ψn,k as a function of k, from (3.14) we see that ψn,k is periodic in the
reciprocal lattice. Therefore, we can write the Fourier expansion,

ψn,k(r) =
1√
N

∑
R

fn,R(r) e
iR·k where fn,R(r) =

1√
N

∑
k

ψn,k(r)e
−iR·k (6.1)

Notice that,

fn,0(r) =
1√
N

∑
k

ψn,k(r) ≡ ϕn(r) (6.2)
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by Bloch’s theorem

fn,R(r) =
1√
N

∑
k

ψn,k(r)e
−iR·k

=
1√
N

∑
k

ψn,k(r−R)

= ϕn(r−R)

(6.3)

We call ϕn(r − R) the Wannier functions. Any Bloch vector can be expressed in the basis of
Wannier functions

ψn,k(r) =
1√
N

∑
R

e+ik·Rϕn(r−R) for any Bloch function

ϕn(r) =
1√
N

∑
k

e−ik·Rψn,k(r) associated Wannier functions

(6.4)

We can show that Wannier functions at different lattice sites or different band indices are orthogonal.
First notice that the Bloch functions are orthogonal (they are eigenstates of the Hamiltonian, which
is Hermitian) ∫

ψ∗
n′,k′(r−R′)ψn,k(r−R)]dr = δn,n′δk,k′ (6.5)

Then∫
ϕ∗n′(r−R′)ϕn(r−R)dr =

∫ [
1√
N

∑
k′

e−ik′·R′
ψn′,k′(r−R′)

]∗ [
1√
N

∑
k

e−ik·Rψn,k(r−R)

]
dr

∝
∑
k,k′

e−i(k·R−k′·R′)

∫
ψn′,k′(r−R′)∗ψn,k(r−R)]dr

∝
∑
k,k′

e−i(k·R−k′·R′)δn,n′δk,k′

∝ δn,n′

∑
k

eik·(R−R′)

∝ δn,n′δR,R′

(6.6)

∫
ϕ∗n′(r−R′)ϕn(r−R)dr ∝ δn,n′δR,R′ (6.7)

7 Tight binding model

Now we take an entirely different approach to a toy model of a solid. Rather than examining the
case of a free electron, we by thinking about the case of a single atomic Hamiltonian, Hat, outside
of the crystal lattice. In general, Hat will have a set of bound solutions ψj(r) which are the atomic
orbitals.

Hatψj(r) = Ejψj(r) (7.1)

Now the corresponding crystal Hamiltonian is

H =
∑
R

Hat(r−R) = Hat(r) +
∑
R̸=0

Hat(r−R) (7.2)
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H = Hat(r) + ∆U(r) where ∆U(r) =
∑
R̸=0

Hat(r−R) (7.3)

The ideal limit: If atomic eigenstates are sufficiently localized so that the overlap between ψj(r)
and ∆U(r) is exactly zero, then the localized atomic wave functions are eigenstates of the full
crystal Hamiltonian

Hψj(r) = [H +∆U(r)]ψj(r) = Hψj(r) + 0 = Ejψj(r) (7.4)

In this limit, for each atomic orbital ψj(r), we obtain a set of N eigenstates {ψj(r−R)} of the orbital
localized on each site of the lattice. However, these eigenstates do not satisfy Bloch’s theorem, nor
the periodic (Born Von-Karman) boundary condition of the crystal. Instead, the wave functions
of an electron in the crystal must be some linear combination of these eigenstates that do satisfy
Bloch’s theorem.

Recall we can write any Bloch function in a basis of Wannier functions (6.4). Conveniently, if we
let the Wannier functions be the atomic orbitals, ϕn(r) = ψn(r), then ψn,k(r) is indeed a linear
combination of atomic orbitals. Hence, the eigenstates of the Hamiltonian are

ψn,k(r) =
1√
N

∑
R

eik·Rψn(r−R) (7.5)

We can also directly solve for the band structure

Hψn,k(r) = H

[
1√
N

∑
R

eik·Rψn(r−R)

]

=
1√
N

∑
R

eik·R [Hψn(r−R)]

(from (7.4)) =
1√
N

∑
R

eik·R [Enψn(r−R)]

= Enψn,k(r)

(7.6)

The bands are simply flat (independent k) with energies of the atomic orbitals. This is quite boring
and not informative.

Tight binding: unlike the ideal case, it is more realistic that the overlap of the bare atomic
orbitals ψj(r) and ∆U(r) is small but non-zero. Then ψj(r) are no longer eigenstates of the full
Hamiltonian H.

However, we still know that the eigenstates must be Bloch functions and the expansion in Wannier
functions is always valid. The eigenstates must be of the form

ψn,k(r) =
1√
N

∑
R

eik·Rϕn(r−R) (7.7)

While no longer eigenstates, the atomic orbitals nevertheless provide a complete basis. Therefore,
we can express

ϕn(r) =
∑
j

bjψj(r) (7.8)
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and the Bloch function becomes

ψn,k(r) =
1√
N

∑
R

∑
j

eik·Rbn,jψj(r−R) (7.9)

ψn,k(r) =
∑
j

bn,j

[
1√
N

∑
R

eik·Rψj(r−R)︸ ︷︷ ︸
Ψj,k(r)

]
(7.10)

Let’s plug this into the Schrodinger equation Hψn,k(r) = εn,k(r) and take the inner product with
ϕm(r). First, expanding the RHS and LHS separately (we cancel the factor of 1/

√
N on both sides)∫

ψ∗
m(r)εn,k

∑
j

bn,j
∑
R

eik·Rψj(r−R)


= εn,k

∑
j

bn,j

(∑
R

∫
eik·Rψ∗

m(r)ψj(r−R)dr

) (7.11)

∫
ψ∗
m(r)H

∑
j

bn,j
∑
R

eik·Rψj(r−R)


=

∫
ψ∗
m(r) [Hat(r) + ∆U(r)]

∑
j

bn,j
∑
R

eik·Rψj(r−R)


=
∑
j

bn,j

(∑
R

∫
eik·Rψ∗

m(r)Hatψj(r−R)

)
+
∑
j

bn,j

(∑
R

∫
eik·Rψ∗

m(r)∆U(r)ψj(r−R)

)

= Em

∑
j

bn,j

(∑
R

∫
eik·Rψ∗

m(r)ψj(r−R)

)
+
∑
j

bn,j

(∑
R

∫
eik·Rψ∗

m(r)∆U(r)ψj(r−R)

)
(7.12)

Putting everything together∑
j

[
(εn,k − Em) γm,j(R)− tm,j(R)

]
bn,j = 0 for fixed k and all j [exact] (7.13)

where

γm,j(R) =
∑
R

∫
eik·Rψ∗

m(r)ψj(r−R)dr

tm,j(R) =
∑
R

∫
eik·Rψ∗

m(r)∆U(r)ψj(r−R)dr

(7.14)

Some remarks:

• We can write the expression above in matrix form
(εn,k − E1)γ1,1 − t1,1 (εn,k − E1)γ1,2 − t1,2 . . .

(εn,k − E2)γ2,1 − t2,1 (εn,k − E2)γ2,2 − t2,2
...

. . .



bn,1

bn,2
...

 = 0 (7.15)
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• We have not made any approximations in our derivation of (7.13). Here we present the
standard assumptions for the tight-binding model:

1. Recall in the ideal case that when the overlap between the atomic orbital ψn(r) and
∆U(r) is zero, the Wannier functions are exactly the atomic orbitals ϕn(r) = ψn(r).
Therefore, when the overlap is small, it is reasonable that ϕn(r) ≈ ψn(r).

While we exactly expanded the Wannier functions in the complete basis of atomic or-
bitals9 (7.8), since ϕn(r) ≈ ψn(r) we can restrict restrict this expansion (7.8) to only
include orbitals that are close in energy to the energy of the valence electrons.

Suppose that we consider only m orbitals {ψn1(r), . . . , ψnm(r)} rather than the complete
(infinite) set. Then the Bloch wave becomes (7.10) becomes a linear combination of
atomic orbitals (LCAO)

ψn,k(r) ≈
m∑
j=1

bnΨj,k(r) where Ψj,k(r) =
1√
N

∑
R

eik·Rψj(r−R) (7.16)

With this approximation (7.13) is unchanged except for the summation of n now runs
to m and not infinity.

2. Since we assume that the atomic orbitals are well localized, we will take overlap between
atomic orbitals located at different sites to be zero. Furthermore, recall the that atomic
orbitals (both at the same site) are orthonormal.∫

ψ∗
m(r)ψj(r)dr = δm,j (7.17)

Therefore, γm,j becomes

γm,j(R) =
∑
R

∫
eik·Rψ∗

m(r)ψj(r−R)dr

=

∫
ψ∗
m(r)ψj(r)dr+

∑
R= ̸=0

∫
eik·Rψ∗

m(r)ψj(r−R)dr

≈ δm,j + 0

(7.18)

γm,j ≈ δm,j (7.19)

3. Once again invoking well-localization of the atomic orbits, we argue that ∆U(r) can at
most couple atomic orbitals at the same site or nearest neighbors. Therefore

tm,j(R) ≈
∑

R≤N.N.

∫
eik·Rψ∗

m(r)∆U(r)ψj(r−R)dr (7.20)

Putting everything together, (7.13) becomes∑
j

[
(εn,k − Em) δm,j − t̃m,j

]
bn,j = 0 for fixed k and j = 1, . . . ,m

t̃m,j =
∑

R≤N.N.

∫
eik·Rψ∗

m(r)∆U(r)ψj(r−R)dr [tight-binding]
(7.21)

9Recall the complete basis of atom includes unbound states!
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In matrix form, the tight-binding equations becomes
(εn,k − E1)− t1,1 −t̃1,2 . . . −t̃1,m

−t̃2,1 (εn,k − E2)− t̃2,2 . . . −t̃2,m
...

. . .
...

−t̃m,1 −t̃m,2 . . . (εn,k − Em)− t̃m,m




bn,1

bn,2
...

bn,m

 = 0 (7.22)

• TODO: S, Px, Py, Pz example in Girvan and Yang
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