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1 The χ2 Distribution

Suppose X1, X2, . . . , Xk are k i.i.d.1 standard normal distributions Xi ∼ N(0, 1). We de-
fine the chi-squared distribution with k degrees of freedom as the sum of the squared Xi

distributions,

χ2
k =

k∑
i=1

X2
i (1.1)

1.1 Probability Density Function

We can determine the chi-squared PDF fχ2
k
(x) by first writing out its CDF Fχ2

k
(x). If we

define,

rk =

√∑
k

x2
i =

√
x (1.2)

Then CDF is the volume integral of the probability over an n-sphere of radius rk =
√
x,

∗Updated August 18, 2022
1Independent, identically distributed.

1



F (x) =

∫ √
x

0

(∏
k

e−x2
i /2

√
2π

)
Ak(rk)drk (1.3)

=

∫ √
x

0

e−r2k/2

(2π)k/2
Ak(rk)drk (1.4)

=

∫ x

0

e−x′/2

(2π)k/2
Ak

(√
x′
)( dx′

2
√
x′

)
(1.5)

Where Ak(r) is the surface area of the k-dimensional sphere,

Ak =
2rk−1πk/2

Γ(k/2)
(1.6)

Thus,

F (x) =

∫ x

0

e−x′/2

(2π)k/2
2x′(k−1)/2πk/2

Γ(k/2)

dx′

2
√
x′

(1.7)

F (x) =

∫ x

0

e−x′/2

2k/2
x′(k/2−1)

Γ(k/2)
dx′ (1.8)

Now, we obtain the PDF:

f(x) =
dF

dx
(1.9)

fχ2
k
(x) =

e−x/2 x(k/2−1)

2k/2 Γ(k/2)
(1.10)

2



1.2 MGF, Mean, and Variance

We can calculate the moment generating function of χ2
k via brute force,

E(etχ
2

) =
1

2k/2 Γ(k/2)

∫ ∞

0

(
e−x/2 x(k/2−1)dx

)
etx (1.11)

=
1

2k/2 Γ(k/2)

∫ ∞

0

x(k/2−1)e−x(1/2−t)dx (1.12)

for, u = x(1/2− t),

E(etχ
2

) =
1

2k/2 Γ(k/2)

∫ ∞

0

(
u

1/2− t

)k/2−1

e−u du

1/2− t
(1.13)

=
1

2k/2 Γ(k/2)
(1/2− t)−k/2

∫ ∞

0

uk/2−1e−udu (1.14)

=
1

2k/2 Γ(k/2)
(1/2− t)−k/2 Γ(k/2) (1.15)

Thus,
Mχ2

k
(t) = E(etχ

2
k) = (1− 2t)−k/2 (1.16)

Now let’s calculate the mean,

E(χ2
k) =

dMχ2
k

dt

∣∣∣∣
t=0

=
k

(1− 2t)k/2+1

∣∣∣∣
t=0

(1.17)

E(χ2
k) = k (1.18)

The fact that expectation value is proportional to the degrees of freedom should make sense.
We know that E[

∑
k X

2
i ] =

∑
k E(X2

i ) = kE(X2
1 ). It happens that E(X2

1 ) = 1, so the mean
is exactly equal to the number of degrees of freedom.

In other words, the expectation value per degree of freedom is 1. We’ll make use of this fact
in the next section!

Now, let’s calculate the variance. First,

E
(
(χ2

k)
2
)
=

d2Mχ2
k

dt2

∣∣∣∣∣
t=0

=
k(k + 2)

(1− 2t)k/2+2

∣∣∣∣
t=0

= k2 + 2k (1.19)

Now,

V ar(χ2
k) = E

[
(χ2

k)
2
]
−
[
E(χ2

k)
]2

= k2 + 2k − k2 (1.20)

V ar(χ2
k) = 2k (1.21)

2 Goodness-of-Fit Testing

There are two types of statistical tests that are commonly performed with the Chi-squared
distribution: (1) the reduced Chi-squared test and (2) Pearson’s Chi-squared test. The
reduced Chi-squared test is used to determine how well a model fits observations assuming
Gaussian noise. Pearson’s Chi-squared test is a p-value test for a multinomial distribution.
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2.1 Reduced Chi-Squared Test

Suppose we collect a set of data {xi, yi} relating how some variable y relates to variable x.
Furthermore, let’s assume that the sources of error for our measurements are Gaussian, and
that the uncertainties for each data point {σi} is known.

We can fit out data to a model ŷ(⃗a;x) where a⃗ = (a1, a2, . . . , am) are the fit parameters and
fi(x) are arbitrary functions of x that do not involve a⃗,

ŷ(⃗a;x) =
m∑
j=1

ajfj(x) (2.1)

If we define the variable χ2 (which we’ll justify in a bit),

χ2 =
n∑

i=1

(
yi − ŷ(⃗a;xi)

σi

)2

(2.2)

Then we can determine the optimal fit parameters a⃗ for our model ŷ(⃗a, x) by minimizing χ2.
This is known as the method of least squares!2

But how do know how well our fit fits our data? We might expect that the smaller the
value of χ2, the smaller the residuals, and the better our fit. This reasoning is correct, but
misleading. Instead, we often used the reduced Chi-squares statistic χ2

r as a heuristic for
how well our model fits the data.

Suppose our model is correct. Then, for every point xi, we would expect the distribution of
our observed yi to be Gaussian with mean ŷ(⃗a, xi) and variance σ2

i . In other words,

yi ∼ N
(
ŷ(⃗a, xi), σ

2
i

)
(2.3)

2This is how Scipy’s curve fit function operates.
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If we “normalize” the random variable yi,

yi − ŷ(⃗a, xi)

σi

= N(0, 1) = Xi (2.4)

Defining Xi to be i.i.d standard normal like in the previous section,∑
n

(
yi − ŷ(⃗a, xi)

σi

)2

=
∑
i

X2
i = χ2

k (2.5)

Thus we were justified in calling 2.2 χ2. But what is the number of degrees of freedom k?

Each data point represents a distinct degree of freedom, so with n data points, we have
n degrees of freedom. However, our model with m fit parameters uniquely determines m
degrees of freedom.

In other words, given m fit parameters: if we know the first n−m values of yi, then without
loss of generality, we must know the last m values of yi because these are the values such
that χ2 is minimized with respect to our model. Therefore, the Chi-squared distribution has
k = n−m degrees of freedom.3

Now, we define the reduced Chi-squared value to be,

χ2
r =

χ2

ν
; ν = degrees of freedom (2.6)

Recall that we found (1.18) the expectation value of χ2
r to be 1. This means that if our

model correctly describes the observed data, we would not expect the value of χ2
r to be as

small as possible. Instead we expect χ2
r = 14.

If χ2
r > 1, it is likely that the model is incorrect or that the fit parameters do not accurately

describe the data.

3The assumption that our model is a linear combination of functions (2.1) is critical! If we use an arbitrary
model, we can not generally say that there are n−m dof.

4Notice that the variance per degree of freedom is also constant (1.21).
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If χ2
r < 1, it is possible that the data is over fitted: there are too many degrees of freedom

in the model and we are fitting noise.

Generally, over fitting is not so dramatic. More subtly, the fit parameters will deviate from
their true values in order to account for noise.

Another cause for χ2
r < 1 is if the data uncertainties are overestimated.

Here, the measurement uncertainties are so large that the fit is not longer meaningful.

A rule of thumb for the reduced Chi-squared test is that for a good fit,

0.8 < χ2
r < 1.5 (2.7)
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2.2 Pearson’s Chi-Squared Test

Suppose we throw n balls at r boxes Bi. The probability of any single ball landing in box Bi

is pi and independent of any other ball. After all of the balls have been thrown, we observe
each box contains νi balls so that,

r∑
i=1

νi = n (2.8)

Given that we observe νi, we want to determine if pi is a good model. The probability of
observing νi is given by the multinomial distribution. While we can make use of this fact,
another approach is to use Pearson’s theorem.

Theorem 2.1 (Pearson).
r∑

i=1

(νi − npj)
2

npj

n large−−−−→ χ2
r−1 (2.9)

The random variable on the LHS is called the Pearson’s Chi-squared variable and converges
in distribution (large n) to the Chi-squared distribution with one less degree of freedom.

A rigorous treatment of Pearson’s theorem is a bit involved, but here I shall present some
intuition (this is not a proof!).

We can define the indicator variable,

I(Xi ∈ Bj) =

{
1, the i-th ball lands in the j-th box

0, else
(2.10)

Then, we will find that νj =
∑n

i=1 I(Xi ∈ Bj)
5 and6,

E(νj) = E

(
n∑

i=1

I(Xi ∈ Bj)

)
=
∑
n

E [I(Xi ∈ Bj)] = npj (2.11)

V ar(νj) = V ar

(
n∑

i=1

I(Xi ∈ Bj)

)
= npj(1− pj) (2.12)

Thus, by the central limit theorem,

νj − nE(νj)√
nV ar(νj)

=
νj − npj√
npj(1− pj)

→ N(0, 1) (2.13)

5The sum of i i.i.d. distributions.
6Skipping some work to show that for an indicator I, E(I) = p and V ar(I) = p(1− p)

7



νj − npj√
npj

→
√

1− pjN(0, 1) = N(0, 1− pj) ≈ N(0, 1) (2.14)

Thus,
(νj − npj)

2

npj
→ N(0, 1)2 (2.15)

We would expect summing over the r boxes to obtain χ2
r. However, notice that νi are not

independent. Because
∑

r νi = n, the system has one less degree of freedom (i.e. if we know
the first r − 1 values of νi, then we must know νr). The fact that νi are not independent is
a major oversight and determining

∑
r X

2
i is not so simple!

Regardless, we have now shown some intuition for why Pearson’s Chi-squared value should
converge to χ2

r−1. Finally, we can use this relation to perform a p-test for our hypothesis.

For example, suppose a system has 6 degrees of freedom and we find that (where Oi are the
observed values for each category and Ei are the expected values for each category),

χ2 =
6∑

i=1

(Oi − Ei)
2

Ei

= 12.44 (2.16)

For a χ2
k=5 distribution with a confidence interval of 0.95, the critical value is 11.07. This

means that there is a 5% chance of observing a χ2 greater than 11.07.

In this case, 12.44 > 11.07, we reject our null hypothesis and claim our model is incorrect.
If instead, χ2 < 11.07, we fail to reject the null hypothesis.
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